Perovskite adsorption on TiO2


Claimed as the “new big things in photovoltaics” [J. Bisquert, J. Phys. Chem. Lett. 2014, 4, 2597], hybrid, organic-inorganic perovskites are innovative materials for photovoltaic applications and they pave the way for low-cost carbon free production energy. Peculiarity of these materials is the fact that they show the advantages of the traditional inorganic semiconductors, as thermal and chemical stability and high carrier mobility, together with those of the organic materials, as chemical tunability and availability low cost production techniques. 

From their first application in 2009 as sensitizers in dye sensitized solar cells, hybrid metallo raised the attention of the scientific community and a plethora of studies, exploring different device concepts, production techniques and the interactions with other advanced materials, appeared in the literature. Nevertheless, in spite of the increasing number of publications on this class of materials, their basics physics is still in part unknown. Recently, we devoted to the study of the structure and electronic properties of these systems with ab-initio simulation techniques at the atomic scale.

Up to now we dedicated to several aspect of the properties of organo-metallic perovskites, going from the crystalline structure, the electronic properties, the spectroscopic response and the interactions with the substrate. In the effort to develop the methodology to describe the electron properties in the most reliable and most general fashion, we demonstrate that the correct prediction of the band gap of these materials requires the inclusion of both relativistic effects (spin-orbit coupling) and electronic correlation (GW approximation) and ad-hoc methodology has been set up. Our studies on the materials structure highlighted the importance of the interplay between H-bonds, covalence/ionicity of the inorganic framework and the relativistic spin-orbit coupling on the crystalline cell. Moreover, with the interplay of theoretical and spectroscopic investigation techniques, we intepreted the vibrational (both Raman and IR) of methylammonium, lead-iodide perovskite, elucidanting important details on the structure and the dynamics of this prototypical material for photovoltaics applications.


Please, read our recent papers about perovskites solar cells: 


39) De Angelis, F.; Kamat, P. V. "Riding the New Wave of Perovskites" ACS Energy Lett. 2017, 2 (4), 922–923 (link)

38) De Angelis, F.; Meggiolaro, D.; Mosconi, E.; Petrozza, A.; Nazeeruddin, M. K.; Snaith, H.J. "Trends in Perovskite Solar Cells and Optoelectronics: Status of Research and Applications from the PSCO Conference" ACS Energy Lett. 2017, 2, 857–861 (link)

37) Quarti, C.; De Angelis, F.; Beljonne, D. "Influence of surface termination on the energy level alignment at the CH3NH3PbI3 perovskite/C60 interface" Chem. Mater. 2017, 29 (3), 958–968 (link)

36) Domansk, K.; Roose, B.;  Matsui, T.; Saliba, M.; Turren-Cruz, S-H:; Correa-Baena, J-P.; Carmona, C. R.; Richardson, G.; J. M., Foster;  De Angelis, F.; Ball, J. M.; Petrozza, A.; Mine, N.; Nazeeruddin, M. K.; Tress, W.; Grätzel, M.; Steiner, U.; Anders Hagfeldtd, A.; Abate, A. "Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells" Energy Environ. Sci. 2017, 10, 604–613 (link)

35) Cortecchia, D.; Neutzner, S.; Kandada, A. R. S.; Mosconi, E.; Meggiolaro, D.; De Angelis, F.; Soci, C.; Petrozza, A. "Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation" J. Am. Chem. Soc2017, 139, 39–42 (link)

34) Akbari, A.; Hashemi, J.; Mosconi, E.; De Angelis, F.; Hakala, M. "First principles modelling of perovskite solar cells based on TiO2 and Al2O3: Stability and Interfacial Electronic Structure" J. Mater. Chem. A2017, 5, 2339–2345 (link)

33) Quarti, C.; Mosconi, E.; Umari, P.; De Angelis, F. “Chlorine Incorporation in the CH3NH3PbI3 Perovskite: Small Concentration, Big Effect” Inorg. Chem. 2016, 56, 74–83 (link)

32) Gratia, P.; Grancini, G.; Audinot, J-N.; Jeanbourquin, X.; Mosconi, E.; Zimmermann, I.; Dowsett, D.; Lee, Y.; Grätzel, M.; De Angelis, F.; Sivula, K.; Wirtz, T.; Nazeeruddin, M. K. "Intrinsic Halide Segregation at Nanometer Scale Determines the High-Efficiency of mixed cation/mixed halide Perovskite Solar Cells" J. Am. Chem. Soc. 2016, 138, 15821–15824 (link)

31) Mosconi, E.; Umari, P.; De Angelis, F.; "Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): A unified DFT and GW theoretical analysis" Phys. Chem. Chem. Phys. 2016, 18, 2715827164  (link)

30) Mosconi, E.; Quarti, C.; De Angelis, F. "Chapter 8: First Principles Modeling of Perovskite Solar Cells: Interplay of Structural, Electronic and Dynamical Effects" In "Unconventional Thin Film Photovoltaics" Da Como, E.; De Angelis, F.; Snaith, H.;  Walker, A. (Eds.), Royal Society of Chemistry (2016(link)

29) Mosconi, E.;  Etienne, T.; De Angelis, F. "First-Principles Modeling of Organohalide Thin Films and Interfaces" in Organic-Inorganic Halide Perovskite Photovoltaics  p. 19, Park, N-G.; Grätzel, M.; Miyasaka, T., Ed. Springer (2016)

28) Mosconi, E.; Meggiolaro, D.; Snaith, H.; Stranks, S. D.; De Angelis, F. "Light-induced Annihilation of Frenkel Defects in Organo-Lead Halide Perovskites" Energy Environ. Sci. 2016, 9, 31803187 (link)

27) Mosconi, E.; De Angelis, F. "Mobile Ions in Organohalide Perovskites: Interplay of Electronic Structure and Dynamics" ACS Energy Lett. 2016, 1, 182–188 (link)

26)Etienne, T.;  Mosconi, E.; De Angelis, F. "Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells?" J. Phys. Chem. Lett. 2016, 7, 1638–1645 (link)

25) Akkerman, Q. A.; Genaro Motti, S.; Srimath Kandada, A. R.;  Mosconi, E.;  D’Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.;  Miranda, L.; De Angelis, F.; Petrozza, A.; Prato, M.; Manna, l. "Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control by a Solution Synthesis Approach" J. Am. Chem. Soc2016, 138, 1010–1016 (link)

24) Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J-P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, H., De Angelis, F.; Abate, A.; Hagfeldt, A.; Pozzi, G.; Graetzel, M.; Nazeeruddin, M.K "A molecularly engineered hole-transporting material for efficient perovskite solar cells" Nature Energy 2016, 1, 15017 (link)

23) Quarti, C.;  Mosconi, E.; Ball, J. M.;  D'Innocenzo, V.;  Tao, C.;  Pathak, S.;  Snaith, H.; Petrozza, A.; De Angelis, F. "Structural and Optical Properties of Methylammonium Lead Iodide Across the Tetragonal to Cubic Phase Transition: Implications for Perovskite Solar Cells" Energy Environ. Sci. 2016, 9, 155163 (link)

22) Grancini, G.; D’Innocenzo, V.; Dohner, E. R.; Martino, N.; Ram Srimath Kandada, A.; Mosconi, E.; De Angelis, F.; Karunadasa, H. I.;Hoke, E.T.; Petrozza, A. "CH3NH3PbI3 Perovskite Single Crystals: Surface Photophysics and its Interaction with the Environment" Chemical Science 2015, 6, 73057310 (link)

21)Mosconi, E.; Azpiroz, J. M.; De Angelis, F. "Ab Initio Molecular Dynamics Simulations of Methylammonium Lead 2 Iodide Perovskite Degradation by Water" Chem. Mater. 2015, 27, 4885–4892 (link)

20) Yang, J.; Siempelkamp, B. D.;  Mosconi, E.;  De Angelis, F.;  L. Kelly, T. "Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO" Chem. Mater. 2015, 27, 4229–4236 (link)

19) Gottesman, R.; Gouda, L.; Kalanoor, B. S.;  Haltzi, E.;  Tirosh, S.;  Rosh-Hodesh, E.;  Tischler, Y.;  Zaban, A. "Photoinduced Reversible Structural Transformations in Free-Standing CH3NH3PbI3 Perovskite Films" J. Phys. Chem. Lett2015, 6, 2332–2338 (link)

18) Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J., D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; De Angelis, F.; Boyen, H-G. "Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite" Adv. Energy Mater. 2015, 5, 1500477 (link)

17) Azpiroz, J. M.;  Mosconi, E.; Bisquert, J.; De Angelis, F. "Defects Migration in Methylammonium Lead Iodide and their Role in Perovskite Solar Cells Operation" Energy Environ. Sci. 20158, 21182127 (link)

16) Quarti, C.; Mosconi, E.; De Angelis, F. "Structural and electronic properties of organo-halide hybrid perovskites from ab initio molecular dynamics" Phys. Chem. Chem. Phys. 2015, 17, 93949409 (link)

15) Mosconi, E.; Umari, P.; De Angelis, F. "Electronic and optical properties of mixed Sn / Pb organohalide perovskites: A first principles investigation" J. Mater. Chem. A 2015, 3, 92089215 (link)

14) Quarti,C.; Mosconi, E.; De Angelis, F. "Interplay of Orientational Order and Electronic Structure in Methylammonium Lead Iodide: Implications for Solar Cells Operation" Chem. Mater. 2014, 26, 6557–6569. (link)

13) Grancini, G.; Marras, S.; Prato, M.; Giannini, C.; Quarti, C.; De Angelis, F.; De Bastiani, M.; Eperon, G. E.; Snaith, H. J.; Manna, L.; Petrozza, A. “The Impact of the Crystallization Processes on the Structural and Optical Properties of Hybrid Perovskite Films for Photovoltaics” J. Phys. Chem. Lett. 2014, 5, 3836–3842 (link)

12) Colella, S.; Mosconi, E.; Pellegrino, G.; Alberti, A.; Guerra, V. L. P.; Masi, S.; Listorti, A.; Rizzo, A.; Guido Condorelli, G.; De Angelis, F.; Gigli, “Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells” J. Phys. Chem. Lett. 2014, 5, 3532–3538 (link)

11) Gottesman, R.; Haltzi, E.; Gouda, L.; Tirosh, S.; Boudhana,Y; Zaban, A.; Mosconi, E.; De Angelis, F. “Extremely slow photoconductivity response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under working conditions” J. Phys. Chem. Lett. 2014, 5, 26622669 (link) 

10) Mosconi, E.; Ronca, E.; De Angelis, F. "First Principles Investigation of the TiO2/Organohalide Perovskites Interface: The Role of Interfacial Chlorine" J. Phys. Chem. Lett. 2014, 5, 2619–2625 (link)

9) Mosconi, E.; Quarti, C.; Ivanovska, T.; Ruani, G.; De Angelis, F. "Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation"  Phys. Chem. Chem. Phys. 2014, 16, 1613716144 (link)

8) De Angelis, F. "Modeling Materials and Processes in Hybrid/Organic Photovoltaics: From Dye-Sensitized to Perovskite Solar Cells" Acc. Chem. Res2014, 47, 3349–3360 (link)

7) Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M. K.; Graetzel, M.; De Angelis, F. "Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting" Nano Lett.2014, 14, 3608–3616 (link)

6) Umari, P.; Mosconi, E.; De Angelis, F. "Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications" Sci. Rep. 20144, 4467(link)

5) Roiati, V.; Mosconi, E.; Listorti, A.;  Colella, S.;  Gigli, G.;  De Angelis F. "Stark Effect in Perovskite/TiO2Solar Cells: Evidence of Local Interfacial Order"Nano Lett. 2014, 14, 2168–2174 (link)

4) Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P.; Ball, J. M.; Lee, M. M.; Snaith, H. J.; Petrozza, A.;  De Angelis, F. "The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment" J. Phys. Chem. Lett.  2014, 5, 279–284 (link)  Highlighted in ACS select (link)

3) Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G.; Gigli, G.; De Angelis, F.; Mosca, R. "MAPbI3-xClxMixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties" Chem. Mater.2013, 25, 4613–4618 (link)

2) Abate, A.;  J. Hollman, D.;  Teuscher, J.; Pathak, S.; Avolio, R.; D’Errico, G.; Vitiello, G.; Fantacci, S.; J. Snaith, H. "Protic Ionic Liquids as p‑Dopant for Organic Hole Transporting Materials and Their Application in High Efficiency Hybrid Solar Cells" J. Am. Chem. Soc. 2013, 135, 13538−13548 (link)

1) Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Graetzel, M.;  De Angelis, F "First Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications"J. Phys. Chem. C  2013, 117, 13902–13913 (link) Highlighted in ACS select (link)